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Nonequilibrium Flow over a Cone

R. SepNEY* AND N. GERBERT
Ballistic Research Laboratories, Aberdeen Proving Ground, Md.

The modifications in the flow over a cone are considered due to departure from thermo-

dynamic equilibrium behind the shock wave.

Only the effects due to vibrational relaxation

are considered. The flow was calculated using the method of characteristics. The numerical
technique that was successful for the cone flow involved a slight modification of the standard
method. As for the case of wedge flow, there is a curved shock, a relaxation layer at the shock,

and an entropy layer at the cone surface.

For the cone case, the thickness of the entropy

layer must vanish sufficiently far downstream from the tip. The pressure on the cone sur-

face shows an overexpansion.

Nomenclature

constant appearing in temperature variation of »
frozen specific heat at constant pressure
vibrational energy

constant total enthalpy

Mach number

coordinate normal to cone surface
pressure

velocity

gas constant per unit mass

entropy

radial polar coordinate

arc length along streamlines
temperature

coordinate in freestream direction
coordinate normal to freestream direction
angle between shock and x axis

ratio of frozen specific heats

flow direction relative to z axis
characteristic vibrational temperature
frozen Mach angle

relaxation time

arc length along right characteristic

arc length along left characteristic

arc length along shock wave

angular polar coordinate

IS

IR T I 1 Y

&

R

e

S QTMAT OB H®R Y

Subscripts

cone surface
shock wave

¢
w
@ freestream
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1. Introduection

HIS work is a continuation of our studies on the applica-

bility of the method of characteristics to computing
nonequilibrium flows. The previous work! considered flows
over wedges and other simple two-dimensional shapes.
These shapes had sharp noses, which obviated the difficulties
associated with flow over blunt noses. Here the flow over a
cone is discussed. The reasons for studying such simple
body shapes are 1) they allow one to gain some insight into
the physics of the flow and the possible numerical pitfalls
of the characteristics method; and 2) it is of basic interest
to see how these simple, classical, supersonic flows are modi-
fied due to departure from thermodynamic equilibrium. At
the present time there even appears to be engineering interest
in the high-temperature aspects of flows over wedges and
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cones; however, the temperature in the flows to be con-
sidered here is such that only vibrational effects are im-
portant.

It is worthwhile to give a cursory review of the other meth-
ods of analyzing nonequilibrium flows. There is the inverse
method, which has so far been applied only to blunt-body
flows.2 3 Tts success is a little difficult to evaluate. It
should be noted that rather stringent requirements on ac-
curacy should be imposed here, since, for many purposes,
the final results are to be used as initial data for a character-
isties solution in the supersonie region, and errors in the initial
data inevitably propagate and usually amplify.

Several investigators have solved flow problems by linear-
ization of the equations with respect to freestream conditions
(see the review paper by Li%). These solutions are interesting
in their own right, but their limitations are severe due to the
linearization.{

A method that seems feasible for investigating portions of
the flow is to expand in a series about frozen or equilibrium
conditions.> ¢ However, this is valid only for near frozen
flow. The results given by Sedney® for flow over a wedge
and by Napolitano® for flow around a corner are incorrect
for near-equilibrium flow. The conditions near equilibrium
must depend on the previous flow history, which is not taken
into account in such an expansion.!

The streamtube method,” 8 where it is necessary to assume
a pressure distribution, has been used for the flow along the
body and also within the shock layer. The accuracy of this
method has not been assessed yet.

Another method that seems promising but has not been
tested extensively involves the application of the Dorod-
nitsyn integral technique to nonequilibrium flow.*

As for previous work using characteristics, Cleaver? com-
puted the flow around a corner for a Lighthill ideal dissociat-
ing gas. Three cases were studied for small turning angles,
which makes it difficult to say if the method is accurate
enough for the cases in which large changes oceur in the
flow. For the same model of gas, Capiaux!' computed
flows over a wedge. The numerical method seems to be
the standard one, but the coordinates are (y,y), where
Y(z,y) is the stream function, and z and y are Cartesian
coordinates. The author states that the accuracy is in-
creased by using these coordinates. However, the results
given appear to be wrong, since the known asymptotic values
of shock angle and surface pressures are not attained.§

I Lee® has analyzed nonequilibrium flow over a wedge by
applying a linear perturbation to uniform frozen flow behind a
shock wave. The limitations are not as severe for this approach,
e.g., large wedge angles can be allowed. This analysis yields
formulag for the flow variables and shock wave shape which
agree, but only qualitatively, with results in Ref. 1.

§ In the revised version of this work,¢ the results were changed
so that the correct asymptotic values were attained.
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This illustrates the fact! that the validity of the results of a
characteristics computation for nonequilibrium flow depends
on the numerical technique used and/or on the choice of de-
pendent variables. These are much less critical for equilib-
rium or frozen flow computations. In our previous work,?
two numerical techniques were used, one giving incorrect
results. For the cone case, the method that was successful
for wedge flow became inadequate after computing large
distances from the tip, and a third method was used to handle
this situation.

1t was necessary to compute over such large regions be-
cause of the behavior of the pressure on the cone surface.
On the wedge, for all cases computed, the pressure mon-
otonically approached the value computed for equilibrium
wedge flow. This was shown to be the proper value. On
the cone, for the cases computed thus far at least, the pres-
sure goes below the value for equilibrium conical flow but
then slowly approaches it from below. This is the most
striking difference between the wedge and cone flows.

Qualitatively, the cone flow properties behave like those
for wedge flow, except for the difference just noted. The
starting numerical process had to be different because of the
singular nature of the initial, frozen, conical flow. A sketch
showing the starting process is given in Fig. 1. The calcu-
lation is started from a frozen conical flow characteristic BC,
which is computed separately. In wedge flow one can start
in the same way, but it is often convenient to have just two
initial points, one at the tip and the other on the straight,
frozen shock. Although this procedure is also possible for
the cone, it leads to prohibitively large errors. The results
for shock-wave angle, temperature, etc., are qualitatively
the same as in wedge flow. In particular, there is a relaxa-
tion layer always present at the shock and an entropy layer
near the body even far downstream from the tip. For the
cone, however, the thickness of the entropy layer must ap-
proach zero sufficiently far downstream of the tip just from
continuity considerations.

A reliable check on the computations near the tip was
available for the wedge case, in that the shock curvature and
flow variable gradients could be computed easily and inde-
pendently.® Alternatively, these can be used as an aid in
starting the computations. As will be discussed later, such
information would be even more valuable for the cone case.
Here, however, the initial gradients are not easily obtain-
able because of the singularity at the tip. They could be
obtained by a perturbation of frozen conical flow. However,
the form of the perturbation is not known a priori; it may
not be linear. This matter is being investigated, but no re-
sults have been obtained yet.

2. Characteristic Equations

The steady, inviscid, axisymmetric flow of a pure diatomic
gas will be considered; heat conduction and diffusion effects
are neglected. It is assumed that the temperatures and pres-
sures are such that the translational and rotational degrees
of freedom are in equilibrium, and chemical effects are frozen.
Only the vibrational energy departs from its equilibrium
value. The departure from equilibrium is governed by the
rate equation

dE;/dt = [BE(T) — El/7 2.1

where E; is the local value of the vibrational energy, E;(T)
is the vibrational energy if equilibrium existed at the local
temperature 7', 7 is the relaxation time, and the derivative is
the substantial derivative. For quantized simple harmonic
oscillators,

E(T) = ROy/[exp(0+/T) — 1]

where O, is the characteristic vibrational temperature and
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R is the gas constant per unit mass. The variation of = with
temperature and pressure was approximated by

7« [exp(C/T)"3]/p

where the constant C' was evaluated for various temperature
intervals by fitting the data of Blackman,'? and p is the pres-
sure; reference values of 7' and p are taken at the tip of the
cone surface. With the freestream flow in the z direction
and with 8 the angle of flow with respect to the = direction,
the equations of the characteristics are

dy/dz = tan(f = u) dy/dx = tanf

i.e., the Mach lines based on the frozen Mach angle u and the
streamlines.

As discussed in Ref. 1, using entropy as a dependent vari-
able leads to large errors in the computation because of the
behavior of the “vibrational temperature” at the shock wave.
The dependent variables chosen were p, 6, E:, ¢, and T, where
¢ is the magnitude of the velocity. The compatibility equa-
tions are

v o8 of csine -
%Jz; _ EW)% (2.4)
é %Z _ %I%M %7; 2.5)

where
_E(T) — E; | sind
€= 7qCp T y

£, n, and s are arc lengths along the right and left Mach lines
and streamline, respectively, v. = 1.4 is the ratio of frozen
specific heats, and C,p, is the frozen specific heat. In addi-
tion, the energy equation is needed:

CpT + E; + (¢3/2) = h, 2.6)

where /. is the constant total enthalpy. For a more complete
discussion of these equations, see Ref. 1.

3. Numerical Technique

In calculating nonequilibrium wedge flow, it was found
that there were difficulties with the standard method, and a
more accurate technique was developed. This new technique
gave acceptable results; however, these results always showed
some oscillations in the pressure on the wedge surface. These
oscillations decreased with decreasing grid size but were also
dependent on the method of starting the computation.
When this method was used for cone flow, the oscillations
eventually became so large that the computation could not
be continued. A third technique, which involves just a
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Fig. 2 Grid schemes for
the numerical techniques.

slight change of the standard one, finally gave acceptable
results.

The standard technique? is illustrated in Fig. 2. With
all quantities known at points I and u, the defining relations
for the Mach lines, together with (2.2) and (2.3), are used to
determine z, y, p, and 6 at the new point P. With 6 known,
the intersection of the streamline with the diagonal line lu,
point m, is determined. Linear interpolation is used to de-
termine conditions at m, and (2.4) and (2.5) give ¢ and E; at
P. This process is iterated and would be correct to second
order in grid size except for the linear interpolation.

The second technique makes use of the additional point b
and series expansions about the midpoint of the characteristic
net after transforming to characteristic variables. It is
correct to second order without iteration, and there are no
interpolations. More details of this method are found in
Ref. 1.

The third technique is basically the same as the standard
one except that the streamline is carried back to point k,
its intersection with the characteristic bl (or bu). Again
linear interpolation is used to determine conditions at %, and
the process is iterated. Previously, it was felt that the diffi-
culties with the standard method were caused by linear inter-
polation, but this is not the case, since the third method does
not exhibit these.

Results for the case of wedge flow are shown in Fig. 3,
where the three techniques just described are labeled two-
point iterative, three-point noniterative, and three-point
iterative. In dimensionless form, pressure is plotted vs dis-
tance along the wedge. These results show two features of
the standard method. First, it gives pressures that are
always below the other two methods, and second, there is a
drastic effect when the grid size is increased. (The effects
on T and E; are negligible.) The vertical bars indicate
positions where the grid size was increased by a factor of two.
The three-point noniterative case is also affected. If the
calculation is carried out further, the oscillations tend to
grow. The effect on the three-point iterative case is negli-
gible. Actually, the wedge case can be carried out without
increasing the grid size, but in the cone case several such
increases are necessary. The results shown for the wedge
case are representative of what occurs for the cone, except
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Fig. 3 Dimensionless pressure vs distance along the

wedge surface computed by three numerical techniques.

The grid size was doubled at positions indicated by vertical
) bars.

ATAA JOURNAL

MQ =12
8, = 46.39°

[
113.21

113.0

112.8

112.6

112.4-
(12.2-
112.0-
1.8

EQUILIB. CON. FL.
M6 — — = e —— e e

|||.4 T T T T ¥ 1
o 04 .08 .2 16 .20 .24

Fig. 4 Dimensionless pressure vs distance along the cone
surface for two positions of the initial characteristics
[ indicates pressure for frozen conical flow.

that, for the rising portion of the pressure (to be described
in the next section), the three-point iterative technique does
show some effect due to increasing the grid size.

The authors do not have an explanation for the differences
caused by the slight change from the two-point iterative to
the three-point iterative methods. Intuitively, it seems
better to make use of information at the third point, but the
explanation must lie in the way in which errors are propa-
gated, since the methods give essentially the same results
initially.

The initial results for pressure on the cone surface are
shown in Fig. 4 in dimensionless form. Results for two
positions of the starting characteristic, BC of Fig. 1, are
shown. All three methods gave essentially the same results
in this region. The steep gradient oceurs along the portion
BD of the cone surface. The rapid change in the tip region
requires rather small grid sizes, and this makes the compu-
tations tedious. An analytic solution valid in the tip region
would be very helpful.

4. Results

Some representative results will be given for the flow of
N, over a cone. The freestream temperature is taken as
300°K. Actually, only 0,/T. and C/T. need to be speci-
fied for a fixed freestream Mach number. For N, 6; =
3336°K was used. The freestream pressure does not have
to be specified except to obtain T4g.,, where 1, is the relaxation
time evaluated on the body at the tip; this length was used
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Fig.5 Shock wave angle vs dimensionless arc length along
shock.
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to nondimensionalize all distances. The quantities p, T, and
g were made dimensionless by their freestream values, E; by
CpoT.. Results for a freestream Mach number M, = 12
and cone angle 6, = 46.39° will be given. For this case
700w = 0.015 cm if p. = 1 atm; for other freestream pres-
sures this length is divided by p., in atmospheres.

In Fig. 5 the shock wave angle $ is plotted as a funection
of arc length along the shock and shows a monotonic decrease
from the frozen value to the equilibrium value for conical
flow. This latter value is taken from Ref. 13. In Fig. 6
the pressure on the cone surface is shown going below the
value for equilibrium conical flow and then slowly approach-
ing this value from below. In the region shown, the error
in p is at most 0.01. The calculations have been extended
to s = 20, where the error, due to oscillations and increasc
of grid size, grows to about 0.05; at s = 20, p has reached
111.5. This overexpansion is the most striking difference
between the cases of wedge and cone flow. 1In all cases com-
puted so far (ranging from M = 6, §, = 48° to M., = 15,
6. = 15°), the overexpansion occurs for cones but not for
wedges. The authors do not know if this behavior is always
to be expected; from physical principles this correlation is
neither necessary nor prohibited. In Fig. 7a the tempera-
ture distribution along the cone surface is shown. The
equilibrium value attained is higher than that for equilibrium
conical flow. The same situation occurs for wedge flow.
In Fig. 7b the distribution of E; along the cone surface is
shown. Using as a criterion for equilibrium [£,(T) — E;]/
E.(T) = 0.01, equilibriumm is reached at s = 5. The
region in which equilibrium is attained is shown in Fig. 8.
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Fig. 7 a) Dimensionless temperature and b) vibrational
energy vs distance along the cone surface.

Fig. 8 Region in which equilibrium has been attained.

Just as for the case of wedge flow, there will be a relaxation
layer near the shock.

In Ref. 1 it was shown that, in addition, there will be an
entropy layer at the wedge surface. This also occurs for
cone flow. In Fig. 9 the distributions of p and T are shown
at two positions across the shock layer normal to the cone
surface; the same quantities are also shown for equilibrium
conical flow. For the equilibrium region, the highest tem-
perature occurs on the cone surface. The resulting entropy
distribution is shown in Fig. 10, normalized with the cone
and shock values. Thus, far from the tip the flow can be
divided into three regions: the entropy layer at the cone
surface, the equilibrium conical flow, and the relaxation layer
at the shock. The situation is the same for wedge flow, but
for cone flow the thickness of the entropy layer must vanish
at large s, just from conservation of mass and the fact that
in equilibrium the entropy is constant along streamlines.
To maintain the accuracy of the computations, the grid
size near the cone surface would have to be governed by the
thickness of this layer, whereas throughout most of the flow
the grid size should be larger. This would present difficulties
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Fig. 9 Dimensionless pressure and temperature vs dis-
tance normal to the cone surface.
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Fig. 10 Relative change of entropy vs distance normal to
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Fig. 11 Dimensionless pressure and temperature vs dis-
tance along cone surface.

and indicates that perhaps another method should be used,
e.g., one that follows streamlines.

The pressure and temperature distributions along the cone
surface are shown in Fig. 11 for M. = 15 and a cone angle
of 15.30°.

5. Discussion

One of the main uses of the numerical solutions described
in the foregoing is to test approximate solutions. An ap-
proximate solution for 7 and E; along the cone surface can
be obtained easily if the velocity ¢ is assumed constant.
Then (2.4) and (2.6) can be integrated numerically. The
results of such an approximation are shown in Figs. 7a and
7b, and the agreement with the characteristic computation
is quite good. This approximation is the analog of that given
by Bloom and Steiger” for the flow along the surface beyond
the sonic point of a blunt body.
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An approximate method of obtaining the shock shape for
nonequilibrium flow over a cone was developed by Chapman
(see Ref. 14). There are three main assumptions in this
method: 1) the flow variables differ by only a small amount
from & reference flow, e.g., frozen or equilibrium flow; 2) this
reference flow is constant; and 3) the difference between the
shock and cone angles is small compared to the cone angle.
Also, the rate equation is written in terms of enthalpy, and
the relaxation time is assumed constant. In polar coordi-
nates (r,¢), the expression for the shock shape is

¢ — ¢e = 2(¢s — ¢J(N — L+ e™N)/N?
A= 7‘/7’0([0

where the subscripts f, e, and 0 refer to frozen and equilibrium
shock angles and the frozen reference conical flow. Trans-
forming this to 8 vs o gives the result shown in Fig. 5. The
agreement with the characteristic computation is quite good.
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